The kinetically-controlled Cope rearrangement of 2,5-bis(4-methoxyphenyl)hexa-1,5-dienes induced by photosensitised electron transfer

Hiroshi Ikeda,^a Akito Ishida,^b Toshihiko Takasaki,^a Sachiko Tojo,^b Setsuo Takamuku^b and Tsutomu Miyashi^{*,a}

^a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan

^b The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567, Japan

The photoinduced electron-transfer Cope rearrangement of (E,E)-3,6-bis(4-methoxyphenyl)octa-2,6-diene (E,E)-1 is kinetically controlled and affords quantitatively the thermodynamically less stable (\pm) -3,4-dimethyl-2,5-bis(4methoxyphenyl)hexa-1,5-diene (\pm) -1 at -80 °C in sharp contrast to the thermodynamically-controlled thermal Cope rearrangement.

In general, the thermal Cope rearrangement of substituted acyclic hexa-1,5-dienes is thermodynamically controlled. In fact, the thermodynamically more stable (*E*,*E*)-3,6-bis(4methoxyphenyl)octa-2,6-diene (E,E)-1 was quantitatively formed upon heating (\pm) -3,4-dimethyl-2,5-bis(4-methoxyphenyl)hexa-1,5-diene (±)-1 at 110 °C in toluene. A sharp contrast to this thermal Cope rearrangement was found in the photoinduced electron-transfer (PET) reactions of (\pm) -1 and (E,E)-1. The 9,10-dicyanoanthracene (DCA)-sensitised photoreactions ($\lambda > 360$ nm) of (±)-1 and (*E*,*E*)-1 gave nearly the same photostationary (PS) mixture of (\pm) -1 and (E,E)-1 at 20 °C in [²H₂]dichloromethane or [²H₃]acetonitrile. Of particular interest was the temperature-dependent change in the PS ratio. When the temperature was changed from 60 to -80 °C, (±)-1 increased and its ratio reached an almost maximum value of 96% at -80 °C in $[{}^{2}H_{2}]$ dichloromethane, while (E, E)-1 decreased continuously as shown in Fig. 1.

The PET Cope rearrangement of (\pm) -1 and (E,E)-1 takes place in a radical cation cyclisation-diradical cleavage (RCCY-DRCL) mechanism † shown in Scheme 1, which includes three successive processes: the RCCY of 1^{+} to *trans-2*,3-dimethyl-1,4-bis(4-methoxyphenyl)cyclohexane-1,4-diyl radical cation 2^{+} , back electron transfer (BET) from DCA⁺⁻ to 2^{+} and the DRCL of **2** to **1**.¹ In support of this mechanism is an energetic advantage both of forward and back ET. The generation of 1 is expected from the highly exothermic free energy change $(\Delta G)^2$ associated with single electron transfer from **1** to the excited singlet state of DCA ($E_{\pm}^{red} = -0.95$ V vs. SCE in acetonitrile) as shown in Table 1. In fact, the fluorescence of DCA was quenched efficiently with the large Stern-Volmer constants ($k_q \tau$) even in dichloromethane. BET from DCA⁻⁻ to **2**⁺ is also calculated to be exothermic by $\Delta G_{\text{BET}} = -78.2 \text{ kJ}$ mol⁻¹ in acetonitrile, on the assumption that $E_{\frac{1}{2}}^{ox}$ of **2** is comparable with that of the 4-methoxycumyl radical ($E_{\frac{1}{2}}^{ox} = -0.14$ V vs. SCE in acetonitrile).³ However, prolonged irradiation of DCA with trans-2,3-dimethyl-1,4-bis(4-methoxyphenyl)bicyclo[2.2.0]hexane **3** in $[{}^{2}H_{2}]$ dichloromethane at 20 °C gave the 61:39 PS mixture of (\pm) -1 and (E, E)-1, which is nearly the same as the Cope PS mixture. This result indicates that 3. successively rearranged to 2^{+} , 2 and a mixture of (\pm) -1 and (E,E)-1 which, in turn, entered into the PET Cope rearrangement cycle (Scheme 1), giving rise to the same PS mixture.

Scheme 1 A RCCY-DRCL mechanism for the PET Cope rearrangement of (\pm) -**1** and (E,E)-**1** (Ar = 4-MeOC₆H₄)

However, in the PET reaction of **3** it was found that the ratio of (\pm) -**1** and (E, E)-**1** at low conversion (2-15%) did not depend upon temperature,‡ unlike a PS ratio of the PET Cope rearrangement. In addition, there was no difference in $k_q\tau$ between (\pm) -**1** and (E, E)-**1** at -80 °C (Table 1). Consequently, the initial RCCY step was assumed to be responsible for the

 $[\]dagger$ A full detail of the RCCY-DRCL mechanism of the PET degenerate Cope rearrangement of 2,5-diarylhexa-1,5-dienes will be published soon.

[‡] The observed ratios of (±)-1 and (*E,E*)-1 were 29:71 (at 2–13% conversion), 32:68 (2–8%), 27:73 (3–14%), 32:68 (1–10%), 31:69 (2–15%), 35:65 (2–8%), 33:67 (2–9%) and 35:65 (6%) at 60, 50, 40, 30, 20, 0, –30 and –80 °C, respectively.

Table 1 Oxidation potentials $(E_{\frac{1}{2}}^{\text{ox}})$ of **1**, free energy changes (ΔG) associated with electron transfer with ¹DCA* and the Stern–Volmer constants $(k_{\mathfrak{a}}\tau)$ for the DCA-fluorescence quenching

			$k_{\mathbf{q}} \tau^{c} / \mathrm{M}^{-1}$		
	$E_{rac{1}{2}}^{\mathrm{ox}a}/\mathrm{V}$	ΔG^{b} /kJ mol ⁻¹	20 °C	−80 °C	
(±)- 1 (<i>E</i> , <i>E</i>)- 1	$^{+1.31}_{+1.11}$	$-62.7 \\ -82.7$	165 205	35 33	

 a vs. SCE in acetonitrile, scan rate 100 mV s $^{-1}$ b In acetonitrile. See ref. 2. c In dichloromethane.

Fig. 2 (*a*) Transient absorption spectra after pulse irradiation of 1,2dichloroethane solutions of (\pm) -1 and (*b*) (*E*,*E*)-1 at 20 °C. (*c*) Absorption spectra of γ -ray irradiated butyl chloride matrices of (\pm) -1 and (*d*) (*E*,*E*)-1 at 77 K (1) and during annealing (2–6 or 7).

observed temperature-dependency of the PS ratio in the PET Cope rearrangement and not the difference in efficiency to form (\pm) -**1**⁺ and (E, E)-**1**⁺, and thus the cyclisations of (\pm) -**1**⁺ and (E, E)-**1**⁺ to **2**⁺ were kinetically investigated by pulse radiolysis.§

As shown in Fig. 2(*a*) and (*b*), pulse radiolyses of (\pm) -1 and (*E*, *E*)-1 in 1,2-dichloroethane exhibited a sharp absorption with λ_{\max} at 515 nm due to $2^{\cdot+}$ and a broad absorption band with λ_{\max} at 680–700 nm due to (\pm) -1⁺⁺ or (*E*, *E*)-1⁺⁺. The transient absorption due to $2^{\cdot+}$ was also observed by laser flash photolyses of (\pm) -1 or (*E*, *E*)-1 under the DCA-sensitised conditions using biphenyl as a cosensitiser in degassed acetonitrile. These assignments were made by comparison with transient absorption maxima of 2,5-bis(4-methoxyphenyl)hexane-2,5-diyl radical cation ($\lambda_{\max} = 520$ nm in 1,2-dichloroethane),^{4a} 1,4-bis-(4-methoxyphenyl)cyclohexane-1,4-diyl radical cation ($\lambda_{\max} = 520$ nm in butyl chloride),^{4b} α -methyl-4-methoxystyrene radical cation ($\lambda_{\max} = 660$ nm in 4:1 water–acetonitrile)^{4c} and 2,5-bis(4-methoxyphenyl)hexa-1,5-diene radical cation ($\lambda_{\max} = 680$ nm in butyl chloride).¶^{4b} Consequently, a sharp absorption appeared as a broad absorption diminished in pulse radiolyses, indicating that the initially formed (\pm)-1⁺ and (*E*, *E*)-1⁺⁺ readily cyclise to a common intermediate 2⁺⁺. Rate constants, k_{obs} , for the RCCY of (\pm)-1⁺⁺ and (*E*, *E*)-1⁺⁺ were obtained by analyses of the time-

Table 2 Kinetic parameters for cyclisation of 1^{+} in 1,2-dichloro-ethane

	ΛH^{\ddagger}		$\Delta S^{t}_{(20\ ^{\circ}\mathrm{C})}/$	$k_{\rm est}/{\rm s}^{-1}$	
	$kJ \text{ mol}^{-1}$	$A/10^{10} s^{-1}$	K^{-1}	60 °C	−80 °C
(±)- 1 ^{•+} (<i>E</i> , <i>E</i>)- 1 ^{•+}	$\begin{array}{c} 16.9 \pm 1.2 \\ 13.8 \pm 1.1 \end{array}$	$\begin{array}{c} 14\pm5\\ 5.7\pm3.0\end{array}$	$\begin{array}{c} -39.9 \\ -47.2 \end{array}$	$\begin{array}{c} 1.3\times10^{8}\\ 1.6\times10^{8}\end{array}$	$\begin{array}{c} 8.0\times10^5\\ 2.4\times10^6\end{array}$

dependent change of absorption intensity at 520 nm. From the Arrhenius plot of k_{obs} between 10 and 50 °C, rate constants, k_{est} , for the RCCY at 60° and -80° C were estimated and listed in Table 2 together with activation parameters for the RCCY of (\pm) -1⁺ and (E,E)-1⁺. Enthalpies of activation (ΔH^{\ddagger}) for (\pm) - 1^{++} and $(E,E)-1^{++}$ are small as expected from the MINDO/3 calculation⁵ of Bauld et al. for the parent hexa-1,5-diene radical cation, but the value for (\pm) -**1**⁺ is 3.1 kJ mol⁻¹ larger than that of $(E,E)-1^{+}$. Accordingly, both $(\pm)-1^{+}$ and $(E,E)-1^{+}$ cyclise to 2^{•+} with nearly the same rate constant at 60 °C, but (±)-1⁺ cyclises three times slower than (E,E)-1⁺ at -80 °C, indicating the retardation of the RCCL of (±)-1⁺ at lower temperature. In fact, γ -ray irradiation studies in low temperature matrices revealed that $(\pm)-1^{+}$ decayed without the formation of 2^{•+} during annealing from 77 to ca. 100 K, whereas (E, E)-1⁺⁺ decayed forming 2⁺⁺ upon similar annealing [Fig. 2(*c*) and (*d*)].** A plausible explanation for the temperaturedependent change in the PS ratio is thus the lower reactivity of (\pm) -1⁺⁺ relative to (E,E)-1⁺⁺, which results in the accumulation of (\pm) -1 in the Cope PS mixture as the temperature is lowered. The repeating formations of $\mathbf{2}^{+}$ with small ΔH^{\ddagger} and $\mathbf{2}$ by highly exothermic BET in the PET Cope rearrangement cycle are thus important key processes for the PET Cope rearrangement to occur even at -80 °C.

Acknowledgements

We gratefully acknowledge financial support from the Ministry of Education, Science, Culture and Sports (Grant-in-Aid for Scientific Research Nos. 03303001, 03403005, 05740439 and 08740560).

 $|| E_a$ values and A-factors shown in Table 2 were obtained as an average of four separate runs. The face values of E_a and A are as follows: $E_{a(\pm)-1} = 16.2, 21.7, 20.7$ and $18.8 \text{ kJ mol}^{-1}, E_{a(E,E)-1} = 14.3, 17.3, 18.9$ and $14.4 \text{ kJ mol}^{-1}, A_{(\pm)-1} = 3.64, 22.6, 20.6$ and $8.08 \times 10^{10} \text{ s}^{-1}$, and $A_{(E,E)-1} = 1.85, 5.11, 14.3$ and $1.61 \times 10^{10} \text{ s}^{-1}$, respectively.

** A sample solution (10 mM) was degassed by repeating three freezepump-thaw cycles and irradiated with γ -ray from a 370 TBq ⁶⁰Co source at 77 K.

References

- (a) T. Miyashi, A. Konno and Y. Takahashi, J. Am. Chem. Soc., 1988, 110, 3676; (b) H. Ikeda, T. Minegishi and T. Miyashi, J. Chem. Soc., Chem. Commun., 1994, 297. See also: (c) T. Miyashi, Y. Takahashi, H. Ohaku, H. Ikeda and S. Morishima, Pure Appl. Chem., 1991, 63, 223; (d) T. Miyashi, H. Ikeda, A. Konno, O. Okitsu and Y. Takahashi, Pure Appl. Chem., 1990, 62, 1531; (e) H. Ikeda, T. Minegishi, Y. Takahashi and T. Miyashi, Tetrahedron Lett., 1996, 37, 4377.
- (a) D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259; (b) A. Weller, Z. Phys. Chem. (Munich), 1982, 133, 93; (c) I. R. Gould, D. Ege, J. E. Moser and S. Farid, J. Am. Chem. Soc., 1990, 112, 4290.
- 3 B. A. Sim, P. H. Milne, D. Griller and D. D. M. Wayner, J. Am. Chem. Soc., 1990, 112, 6635.
- 4 (a) S. Tojo, S. Toki and S. Takamuku, *J. Org. Chem.*, 1991, 56, 6240;
 (b) H. Ikeda, A. Ishida, S. Tojo, S. Takamuku and T. Miyashi, unpublished results; (c) L. J. Johnston and N. P. Schepp, *J. Am. Chem. Soc.*, 1993, 115, 6564.
- 5 N. L. Bauld, D. J. Bellville, R. Pabon, R. Chelsky and G. Green, J. Am. Chem. Soc., 1983, 105, 2378.

Paper 7/01043E *Received* 13*th February* 1997 *Accepted* 19*th February* 1997

[§] A pair of 1,2-dichloroethane solutions of (\pm) -1 and (E,E)-1 (10 mM) was deaerated by argon saturation and simultaneously irradiated with electron pulses from an L-band linear accelerator of Osaka University (28 MeV, 8 ns pulse width).

[¶] A plausible explanation of the absorption with λ_{max} at 515 nm will be separately reported by three of the authors (A. I., S. T. and S. T.).